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How expensive is it to generate samples which will 

converge to a target probability density 𝜋:
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where 𝑍 is a normalizing constant:

Problem Formulation
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Motivations

• reSGLD may over-explore if high-temp chain 

delves too deeply into the distribution tails.

• It deteriorates the model’s stability and lead to 

poor predictions.

• We proposed reflected reSGLD, which utilizes 

reflection steps within a bounded domain for 

constrained non-convex exploration.

Contributions

   Theory:

• We prove the proposed method outperforms the 

naïve reSGLD.

• Reducing the domain diameter enhances mixing 

rates with a quadratic behavior.

   Experiments:

• We introduces the novel use of the method in 

dynamic system identification.

• Extensive testing of r2SGLD against multi-modal 

distribution simulation and large-scale deep 

learning tasks.

Methodology

Reflected Replica Exchange Langevin Diffusion:
 The system dynamics are described by the following SEDs:

 Notes:         is Wiener process;              is inner unit vector; is independent local time.

The Swap Function:

The r2SGLD Algorithm:
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Experiments

Takeaway
• The proposed r2SGLD algorithm 

performs the best.

• A smaller domain diameter in multi-

modal simulation can improve the 

mixing rate. 

• Large initial learning rate in CIFAR100 

facilitates exploration.
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Theoretical Analysis

(a) Assumptions (b) Continuous-time Analysis

(c) Discretization Analysis

Without reflection With reflection

Mixing Rates vs. Domain Diameters
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